APEC 8001 Recitation

Monique Davis

September 10, 2020

Today's Agenda

- 1. TA Introduction
- 2. First Problem Set
- 3. Rational Preferences
- 4. Choice Structures & WARP
- 5. Properties of Walrasian Demands
- 6. More Difficult Topics from Lecture 1
- 7. Questions

TA Introduction

- Monique Davis
- 2nd year PhD student in Applied Economics Graduate Program
- Primary Fields of Interest: Policy Analysis & Labor Economics

First Problem Set

- Contains problems based on this week's lectures
- Uploaded to the course Canvas page under the Problem Sets in the Modules section
- You may work in groups no bigger than 4
- You must submit your solutions to the problem set by 1:30PM (CDT), September 17 either online or hand in a hard copy (if you attend in person classes)
- I will extend the submission deadline to 1:30AM (CDT), September 18 for students located in time zones that are at least 6 hours ahead of CDT
- Make sure the names of all group members are listed on your problem sets

MWG states the following definition of rational preferences:

The preference relation \succeq is **rational** if it has the following two properties:

- 1. **Completeness**: For all $x, y \in X$, either $x \succeq y$ or $y \succeq x$ (or both)
- 2. **Transitivity**: For all $x, y, z \in X$, if $x \succeq y$ and $y \succeq z$, then $x \succeq z$

Question: What are the implications of this definition?

Answer: All we need to show a preference relation \succsim is rational, is to show it is complete and transitive

For completeness, show for all pairs of alternatives $x, y \in X$, there is a strict preference \succ , weak preference \succeq , or indifference \sim between x & y

For transitivity, show that all preference relations "chains" for at least three alternatives in the choice set (i.e, $x, y, z \in X$), imply a logical (non-contradictory) preference relation between the end points of that chain

Choice Structures & WARP

MWG states the following definition of weak axiom of revealed preference (WARP):

The choice structure $(\mathcal{B}, C())$ satisfies the **weak axiom of revealed preference** if the following property holds:

If for some $B \in \mathscr{B}$ with $x, y \in B$, we have $x \in C(B)$, then for any $B' \in \mathscr{B}$, with $x, y \in B'$, and $y \in C(B')$, we must also have $x \in C(B')$.

Let us work through a couple examples demonstrate whether a given choice structure satisfies WARP...

Choice Structures & WARP - First Example

Let
$$X = \{x, y, z\}$$

Define $\mathscr{B} = \{\{x, y\}, \{y, z\}, \{x, z\}, \{x\}, \{y\}, \{z\}\}$
Also, define:

$$C(\{x, y\}) = \{x\}$$
$$C(\{y, z\}) = \{y\}$$
$$C(\{x, z\}) = \{z\}$$
$$C(\{x\}) = \{x\}$$
$$C(\{x\}) = \{x\}$$
$$C(\{y\}) = \{y\}$$
$$C(\{z\}) = \{z\}$$

Question: Does this choice structure satisfy WARP?

Choice Structures & WARP - Second Example

Let
$$X = \{x, y, z\}$$

Define $\mathscr{B}' = \{\{x, y, z\}, \{x, y\}, \{y, z\}, \{x, z\}, \{x\}, \{y\}, \{z\}\}$
Also, define:

$$C(\{x, y, z\}) = \{x\}$$
$$C(\{x, y\}) = \{x\}$$
$$C(\{y, z\}) = \{z\}$$
$$C(\{x, z\}) = \{z\}$$
$$C(\{x, z\}) = \{z\}$$
$$C(\{x\}) = \{x\}$$
$$C(\{y\}) = \{y\}$$
$$C(\{z\}) = \{z\}$$

Question: Does this choice structure satisfy WARP?

APEC 8001 Recitation

Choice Structures & WARP - Third Example

Let
$$X = \{x, y, z\}$$

Define $\mathscr{B}' = \{\{x, y, z\}, \{x, y\}, \{y, z\}, \{x, z\}, \{x\}, \{y\}, \{z\}\}$
Also, define:

$$C(\{x, y, z\}) = \{x\}$$
$$C(\{x, y\}) = \{x\}$$
$$C(\{y, z\}) = \{y\}$$
$$C(\{x, z\}) = \{y\}$$
$$C(\{x, z\}) = \{x\}$$
$$C(\{x\}) = \{x\}$$
$$C(\{y\}) = \{y\}$$
$$C(\{z\}) = \{z\}$$

Question: Does this choice structure satisfy WARP?

Note: Take time on your own to determine if there exists a rational preference relation which rationalizes each of these choice structures

APEC 8001 Recitation

You'll learn in today's lecture that a consumer's **Walrasian demand correspondence** (or **function**), x(p, w), is the consumer's demanded bundle of commodities (i.e., goods) given a vector of prices and the consumer's wealth (or income)

Two of the most important properties about Walrasian demands are:

- 1. Walrasian demands must be homogenous of degree zero
- 2. Walrasian demands must satisfy Walras' law

Properties of Walrasian Demands

Homogeneity of Degree Zero:

Show for any τ > 0, multiplying all prices (p) and wealth (w) by τ leaves x(p, w) unchanged

• i.e., show for any
$$\tau > 0$$
, $x(\tau p, \tau w) = x(p, w)$

• Question: can you show this for
$$x_1(p_1, p_2, w) = \frac{p_2}{p_1} \& x_2(p_1, p_2, w) = \frac{w-p_2}{p_2}$$
, where $p_1, p_2 > 0 \& w > p_2$?

Properties of Walrasian Demands

Walras' Law:

- Show for every p >> 0 and w > 0, $p \cdot x(p, w) = w$
- Keep in mind, this is a dot product since p and x(p, w) are vectors
- So, given two goods, $x_1 \& x_2$: $p_1x_1 + p_2x_2 = w$
- Question: can you show this for $x_1(p_1, p_2, w) = \frac{p_2}{p_1} \& x_2(p_1, p_2, w) = \frac{w p_2}{p_2}$, where $p_1, p_2 > 0 \& w > p_2$?

More Difficult Topics from Lecture 1

- Relationship between preference relations and choice rules
- Weak axiom of revealed preference
- Revealed preference relations

Questions?

Any remaining questions?