6.3. The first task is to show that if $\partial q_i^h / \partial x^h$ is independent of (i.e. not a function of) x^h , then $\partial q_i^h / \partial u^h$ is independent of u. Note that in the first derivative, q_i^h is a Marshallian demand function, while in the second derivative it is a Hicksian demand function. Intuitively, this is quite reasonable. If $\partial q_i^h / \partial x^h$ is independent of x^h than it is a function of prices only, not of prices and x^h . But if the change in demand as x^h changes is not a function of x^h , then it is also not a function of u, since an increase in x^h implies an increase in u. More formally, this can be shown by noting that the Hicksian and Marshallian demand functions must be equal to each other:

$$
q_i(x^h, \mathbf{p}) = q_i(u^h, \mathbf{p}) = q_i(v(x^h, \mathbf{p}), \mathbf{p})
$$

where $v(x^h, p)$ is the indirect utility function. Differentiate both sides by x^h .

$$
\frac{\partial q_i(x^h,\boldsymbol{p})}{\partial x^h}=f(\boldsymbol{p})=\frac{\partial q_i(u^h,\boldsymbol{p})}{\partial u^h}\times\frac{\partial v(x^h,\boldsymbol{p})}{\partial x^h}
$$

where f(p) indicates that $\partial q_i^h / \partial x^h$ is independent of (i.e. not a function of) x^h , so it is a function only of p. Note that any monotonic transformation of the utility function with respect to x, conditional on p, does not affect demand. It is convenient to select a transformation that gives $\partial v(x^h, p)/\partial x^h = 1$, so that that term drops out of the above equation. Then, differentiation of the middle term, $f(p)$, and of the third term in the above equation, with respect to u gives:

$$
0 = \frac{\partial^2 q_i(u^h, \mathbf{p})}{\partial (u^h)^2}
$$

which implies that $\partial q_i^h / \partial u^h$ is independent of u. [There may be another way to show this that is more rigorous.]

Next, show that $\partial [\partial c^h/\partial u^h]/\partial p_i$ is independent of u^h . First, recall that for any function with continuous derivatives the order of differentiation does not matter. Thus $\partial [\partial c^h/\partial u^h]/\partial p_i =$ $\partial [\partial c^h/\partial p_i]/\partial u^h$. Recall also from Shephard's lemma that $\partial c^h/\partial p_i =$ $q_i(u^h, p)$. Thus $\partial [\partial c^h/\partial p_i]/\partial u^h = \partial q_i(u^h, p)/\partial u^h$. We showed above that $\partial q_i(u^h, p)/\partial u^h$ is independent of u^h, thus $\partial [\partial c^h/\partial p_i]/\partial u^h$, which also equals $\partial [\partial c^h/\partial u^h]/\partial p_i$, is independent of u^h .

Finally, show that equation (1.6) in Chapter 6 can be derived from equation (1.4), where $b(p)$ in (1.6) equals $\partial c^h / \partial u^h$ (and explain why $b(p) = \partial c^h / \partial u^h$ must be independent of h).

To answer the question in parentheses, note that:

$$
\frac{\partial q_i(\boldsymbol{u}^h,\boldsymbol{p})}{\partial \boldsymbol{u}^h} = \frac{\partial q_i(C(\boldsymbol{u}^h,\boldsymbol{p}),\boldsymbol{p})}{\partial \boldsymbol{u}^h} = \frac{\partial q_i(x^h,\boldsymbol{p})}{\partial x^h} \, \frac{\partial C(\boldsymbol{u}^h,\boldsymbol{p})}{\partial \boldsymbol{u}^h}
$$

which implies that
$$
\frac{\partial C(u^h, \mathbf{p})}{\partial u^h} = \frac{\partial q_i(u^h, \mathbf{p})}{\partial q_i(x^h, \mathbf{p})/\partial x^h}
$$

we saw above that $\partial q_i/\partial u^h$ and $\partial q_i/\partial x^h$ are both functions of prices only, and so their ratio must also be a function of prices only, and so $\partial c(u^h, p)/\partial u^h$ must also be a function of prices only, and so not of a function of u^h.

To derive the cost function, that is equation (1.6), take the functional form for the demand function, $q_i^h = \alpha_i^h(p) + \beta_i(p)x^h$ and note that we can replace x^h with $c(u^h, p)$. Rearranging this gives:

$$
c(u^h, \mathbf{p}) = [q_i^h(u^h, \mathbf{p}) - \alpha_i^h(\mathbf{p})]/\beta_i(\mathbf{p})
$$

We know from the first part of this problem that $\partial q_i^h(u^h, \mathbf{p})/\partial u^h = f(\mathbf{p})$, that is, it is not a function of u but only a function of **p**. This implies that $q_i^h(u^h, \mathbf{p})$ must take the form:

$$
q_i^h(u, \mathbf{p}) = \gamma_i^h(\mathbf{p}) + \delta_i(\mathbf{p})u^h
$$

for some functions $\gamma_i^h(\mathbf{p})$ and $\delta_i(\mathbf{p})$. (This can also be seen by integrating $\partial q_i^h(u^h, \mathbf{p})/\partial u^h$, which conditional on \bf{p} is a constant, with respect to u^h , which will lead to that constant multiplied by u^h, plus an undetermined constant which could vary over households.) Substituting this into the above expression implies:

$$
c(uh, p) = [\gammaih(p) + \deltai(p)uh - \alphaih(p)]/\betai(p)
$$

$$
= {\{[\gammaih(p) - \alphaih(p)]/\betai(p)\} + [\deltai(p)/\betai(p)]uh}
$$

Thus we can define $a^h(p)$ in (1.6) as $[\gamma_i^h(p) - \alpha_i^h(p)]/\beta_i(p)$ and $b(p)$ in (1.6) as $\delta_i(p)/\beta_i(p)$. This proves that (1.4) implies (1.6).