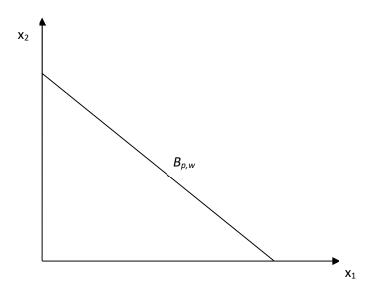
APEC 8001: Problem Set 2

Professor: Paul Glewwe

TA: Monique Davis


Due Date: September 24, 2020

1. Economists are often interested in how much demand changes for a given change in prices and how much demand changes for a given change in wealth. Consider the following functional form for the demand for good *x*_k:

$$\log x_k = \alpha_k + \beta_{wk} \log w + \sum_{l=1}^{L} \gamma_{lk} \log p_l$$

- a. Why do you think that economists would like to estimate this functional form for a demand system? (Hint: What is the interpretation of the β term and the γ terms?)
- b. What does the Engel's aggregation condition imply for the sum of the β_{wk} terms? In particular, if they all have the same value for the L different goods, what value must they take? If they have different values, can they all be > 1, or can they all be < 1? The rest of this problem will focus on changes in w. So for the log x_k equation, assume that all of the prices are fixed, so that they can be treated as a constant and combined with α_k , and the combination can still be called α_k . So focus on the equation log $x_k = \alpha_k + \beta_{wk}\log w$. Consider the case where they have different values. Divide the goods into luxuries (wealth elasticity > 1) and necessities (wealth elasticity < 1). (Any good with wealth elasticity = 1 can be put into either group for the purposes of this problem.) Define E₁ as total expenditures on luxuries and E₂ as total expenditures on necessities. Take the first and second derivatives of E₁ and E₂ with respect to w. What are the signs of these first and second derivatives?
- c. What value does the first derivative of E_2 take as $x \rightarrow 0$? What value does it take as $x \rightarrow \infty$? Draw a diagram with w on the horizontal axis and E_1 and E_2 on the vertical axis. Also draw a 45 degree line. Show where the E_1 and E_2 curves cross in this diagram. Will total expenditure ($E_1 + E_2$) = w for all values of w? In other words, does this demand system "obey" Walras' Law?
- 2. Given the utility function $U(x, y) = x + \log y$, answer the following questions:
 - a. Given prices p_x and p_y and wealth w, derive the demands for x and y.
 - b. Show whether this U(x, y) satisfies: i) homogeneity of degree zero; ii) Walras' law; and iii) quasiconcavity.
 - c. What type of preferences does U(x, y) represent?

3. Consider good x_1 in the following diagram, and suppose that x_1 is an inferior good for some price and wealth situations. The purpose of this question is to see whether it is possible that x_1 is an inferior good for all possible price and wealth situations.

- a. Given the budget line, $B_{p,w}$, and assuming that Walras' law holds, suppose that $x_1 = 0$. Mark this demand for x_1 (and x_2) on the diagram. Based on the price-wealth situation represented by $B_{p,w}$ in this diagram, can x_1 be an inferior good when $x_1 = 0$? Explain your answer.
- b. Using your answer in part (a), indicate some point where x_1 can be located on the budget line $B_{p,w}$ in the diagram if it is an inferior good for this price-wealth situation. If there are many possible points just choose one of them and indicate it in the diagram.
- c. Draw a new budget line in the diagram such that, even if the consumer spent all his/her money on x_1 , the purchased amount of x_1 would be less than the amount of x_1 in your answer in part (b).
- d. Draw a point on your new budget line where x_1 might be. Based on the entire situation depicted in the diagram, explain whether it is possible for any good to be inferior for all price-wealth situations.