APEC 8001: Problem Set 1

Professor: Paul Glewwe

TA: Monique Davis

Due Date: September 17, 2020

1. Proposition 1.B.1 in MWG states the following:

If \gtrsim is rational then:

- i. > is both irreflexive (x > x cannot hold) and transitive (if x > y and y > z, then x > z)
- ii. ~ is reflexive ($x \sim x$ for all x), transitive (if $x \sim y$ and $y \sim z$, then $x \sim z$) and symmetric (if $x \sim y$ then $y \sim x$),
- iii. If $x \succ y$ and $y \gtrsim z$, then $x \succ z$

Provide a proof of the three results in this proposition. Hint: Showing that \sim is transitive is the easiest, so start there.

Answer:

There are several ways to show these results, the proofs below are just one example:

To show \succ is irreflexive, using the definition of a strict preference relation \succ , $x \succ x \Leftrightarrow x \gtrsim x$ but not $x \gtrsim x$, yielding a contradiction. Thus, \succ is irreflexive.

To show > is transitive, using the definition of a strict preference relation >, $\forall x, y, z \in X$ we have $x > y \Leftrightarrow x \gtrsim y$ but not $y \gtrsim x$ and $y > z \Leftrightarrow y \gtrsim z$ but not $z \gtrsim y$. By transitivity of $\gtrsim, x \gtrsim y$ and $y \gtrsim z \Rightarrow x \gtrsim z$. For purposes of contradiction, suppose $z \gtrsim x$. Then by transitivity of $\gtrsim, z \gtrsim x$ and $x \gtrsim y \Rightarrow z \gtrsim y$. Since we cannot have $z \gtrsim y$ if y > z, this yields a contradiction. So, it cannot be that $z \gtrsim x$. And $x \gtrsim z$ but not $z \gtrsim x \Leftrightarrow x > z$. Thus, x > y and $y > z \Rightarrow x > z$, proving > is transitive.

To show ~ is reflexive, using the definition of an indifference relation ~, $\forall x, y \in X$ we have $x \sim y \Leftrightarrow x \gtrsim y$ and $y \gtrsim x$. By transitivity of \gtrsim , $x \gtrsim y$ and $y \gtrsim x \Rightarrow x \gtrsim x$. We know $x \gtrsim x$ and $x \gtrsim x \Rightarrow x \sim x$. Thus, ~ is reflexive.

To show ~ is transitive, using the definition of an indifference relation ~, $\forall x, y, z \in X$ we have $x \sim y \Leftrightarrow x \gtrsim y$ and $y \gtrsim x$ and $y \sim z \Leftrightarrow y \gtrsim z$ and $z \gtrsim y$. By transitivity of $\gtrsim, x \gtrsim y$ and $y \gtrsim z \Rightarrow x \gtrsim z$. Similarly, $y \gtrsim x$ and $z \gtrsim y \Rightarrow z \gtrsim x$. We know $x \gtrsim z$ and $z \gtrsim x \Rightarrow x \sim z$. Thus, $x \sim y$ and $y \sim z \Rightarrow x \sim z$, proving ~ is transitive.

To show ~ is symmetric, using the definition of an indifference relation ~, $\forall x, y \in X$ we have $x \sim y \Leftrightarrow x \gtrsim y$ and $y \gtrsim x$. Thus, we must have $y \gtrsim x$ and $x \gtrsim y$ which implies $y \sim x$. So, we have $x \sim y \Rightarrow y \sim x$. Thus, ~ is symmetric.

To show x > y and $y \ge z$ implies x > z, we will use the definition of strict preference relation >. We have $x > y \Leftrightarrow x \ge y$ but not $y \ge x$. By transitivity of \ge , $x \ge y$ and $y \ge z \Rightarrow x \ge z$. For purposes of contradiction, suppose $z \ge x$. Then by transitivity of \ge , $z \ge x$ and $y \ge z \Rightarrow y \ge x$, yielding a

contradiction. So, it cannot be the case that $z \gtrsim x$. We know $x \gtrsim z$ but not $z \gtrsim x \Leftrightarrow x > z$. Thus, x > y and $y \gtrsim z \Rightarrow x > z$.

- 2. Given the choice set $X = \{x, y, z\}$ and the choice structure ($\mathscr{B}, \mathcal{C}()$), where $\mathscr{B} = \{\{x, y\}, \{y, z\}, \{x, z\}, \{x, y, z\}\}, \mathcal{C}(\{x, y\}) = \{x\}, \mathcal{C}(\{y, z\}) = \{z\}, \mathcal{C}(\{x, z\}) = \{x, z\}, and \mathcal{C}(\{x, y, z\}) = \{x, z\}$:
 - a. Demonstrate this choice structure satisfies the weak axiom of revealed preferences (WARP)

Answer:

Remember, $(\mathcal{B}, \mathcal{C}())$ satisfies WARP if for some $B \in \mathcal{B}$, with $x, y \in B$, we have $x \in \mathcal{C}(B)$, then for any $B' \in \mathcal{B}$, with $x, y \in B'$ and $y \in \mathcal{C}(B')$ we must also have $x \in \mathcal{C}(B')$. Let us consider each choice rule above:

 $C({x, y}) = {x}$: Any choice rule over a different budget set containing both x and y must include x (if it includes y)

 $C(\{y, z\}) = \{z\}$: Any choice rule over a different budget set containing both y and z must include z (if it includes y)

 $C({x, z}) = {x, z}$: Any choice rule over a different budget set containing both x and z must include both x and z

 $C(\{x, y, z\}) = \{x, z\}$: Any choice rule over a different budget set containing x, y and z must include both x and z (if it includes y). Also, any choice rule over a different budget set containing both x and y must include x (if it includes y), any choice rule over a different budget set containing both y and z must include z (if it includes y, and any choice rule over a different budget set containing both x and z must include z (if it includes y, and any choice rule over a different budget set containing both x and z must include both x and z.

All the choice rules in this choice structure are consistent, and thus WARP is satisfied.

b. Suppose instead $C(\{x, y, z\}) = \{x\}$. Does this choice structure satisfy WARP? Provide an explanation for your answer.

Answer:

Again, let us consider each choice rule in this choice structure:

 $C({x, y}) = {x}$: Any choice rule over a different budget set containing both x and y must include x (if it includes y)

 $C(\{y, z\}) = \{z\}$: Any choice rule over a different budget set containing both y and z must include z (if it includes y)

 $C({x, z}) = {x, z}$: Any choice rule over a different budget set containing both x and z must include both x and z

 $C({x, y, z}) = {x}$: Any choice rule over a different budget set containing x, y and z must include x (if it includes y or z). Also, any choice rule over a different budget set containing both x and y must include x

(if it includes y), and any choice rule over a different budget set containing both x and z must include both x (if it contains z).

Because $C(\{x, y, z\})$ only contains x, when $C(\{x, z\})$ contains both x and z, WARP is violated.

Consider a consumer's choice of spending wealth on only two goods, x1 and x2. Show, for each of the following Walrasian demands, that they satisfy: i) homogeneity of degree zero, and ii) Walras' law:

a.
$$x_1(p_1, p_2, w) = \frac{w}{3p_1}$$
 and $x_2(p_1, p_2, w) = \frac{2w}{3p_2}$

Answer:

$$x_1(\tau p_1, \tau p_2, \tau w) = \frac{\tau w}{3\tau p_1} = \frac{w}{3p_1} = x_1(p_1, p_2, w)$$
$$x_2(\tau p_1, \tau p_2, \tau w) = \frac{2\tau w}{3\tau p_2} = \frac{2w}{3p_2} = x_2(p_1, p_2, w)$$

Thus, the Walrasian demands are homogenous of degree zero

$$p_1 x_1(p_1, p_2, w) + p_2 x_2(p_1, p_2, w) = p_1 \left(\frac{w}{3p_1}\right) + p_2 \left(\frac{2w}{3p_2}\right) = \frac{w}{3} + \frac{2w}{3} = w$$

Thus, the Walrasian demands satisfy Walras' law

b.
$$x_1(p_1, p_2, w) = \frac{p_2^2}{4p_1^2}$$
 and $x_2(p_1, p_2, w) = \frac{w}{p_2} - \frac{p_2}{4p_1}$

Answer:

$$x_{1}(\tau p_{1}, \tau p_{2}, \tau w) = \frac{(\tau p_{2})^{2}}{4(\tau p_{1})^{2}} = \frac{\tau^{2} p_{2}^{2}}{4\tau^{2} p_{1}^{2}} = \frac{p_{2}^{2}}{4p_{1}^{2}} = x_{1}(p_{1}, p_{2}, w)$$
$$x_{2}(\tau p_{1}, \tau p_{2}, \tau w) = \frac{\tau w}{\tau p_{2}} - \frac{\tau p_{2}}{4\tau p_{1}} = \frac{w}{p_{2}} - \frac{p_{2}}{4p_{1}} = x_{2}(p_{1}, p_{2}, w)$$

Thus, the Walrasian demands are homogenous of degree zero

$$p_1 x_1(p_1, p_2, w) + p_2 x_2(p_1, p_2, w) = p_1 \left(\frac{p_2^2}{4p_1^2}\right) + p_2 \left(\frac{w}{p_2} - \frac{p_2}{4p_1}\right) = \frac{p_2^2}{4p_1} + w - \frac{p_2^2}{4p_1} = w$$

Thus, the Walrasian demands satisfy Walras' law

c.
$$x_1(p_1, p_2, w) = \frac{w}{p_1 + p_2}$$
 and $x_2(p_1, p_2, w) = \frac{w}{p_1 + p_2}$

Answer:

$$x_1(\tau p_1, \tau p_2, \tau w) = \frac{\tau w}{\tau p_1 + \tau p_2} = \frac{\tau w}{\tau (p_1 + p_2)} = \frac{w}{p_1 + p_2} = x_1(p_1, p_2, w)$$
$$x_2(\tau p_1, \tau p_2, \tau w) = \frac{\tau w}{\tau p_1 + \tau p_2} = \frac{\tau w}{\tau (p_1 + p_2)} = \frac{w}{p_1 + p_2} = x_2(p_1, p_2, w)$$

Thus, the Walrasian demands are homogenous of degree zero

$$p_1 x_1(p_1, p_2, w) + p_2 x_2(p_1, p_2, w) = p_1 \left(\frac{w}{p_1 + p_2}\right) + p_2 \left(\frac{w}{p_1 + p_2}\right) = \frac{p_1 w}{p_1 + p_2} + \frac{p_2 w}{p_1 + p_2} = \frac{w(p_1 + p_2)}{p_1 + p_2} = w$$

Thus, the Walrasian demands satisfy Walras' law